Nanostructured innovative carbon-based materials modify electrodes and dramatically improve the efficiency of thin, flexible lithium batteries
نویسندگان
چکیده
Developed nanostructured innovative carbon materials (nano graphite) have a unique combination of properties. These include: high electronic conductivity, magnetic properties, level adhesion and cohesion low density. Using these properties nano graphite allow fabricating the electrode for batteries without binder, effectively modifying electrodes, which affect mechanism redox electrochemical processes. As results, energy, power stability parameters thin flexible lithium increase.
منابع مشابه
Nanostructured Lithium-Aluminum Alloy Electrodes for Lithium-Ion Batteries
Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach t...
متن کاملNanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries.
Although lithium-ion batteries are traditionally considered to be the most promising candidate for electrochemical energy storage owing to their relatively long cycle life and high energy efficiency, their limited energy density as well as high cost are still causing a bottleneck for their long-term applications. Alternatively, rechargeable Li-O2 batteries have the potential to practically prov...
متن کاملEngineering nanostructured electrodes away from equilibrium for lithium-ion batteries
Boosted by the rapid advances of science and technology in the field of energy materials, Li-ion batteries have achieved significant progress in energy storage performance since their commercial debut in 1991. The development of nanostructured electrode material is regarded as one of the key potentials for the further advancement in Li-ion batteries. This feature article summarizes our recent e...
متن کاملTowards Flexible Transparent Electrodes Based on Carbon and Metallic Materials
Flexible transparent electrodes (FTEs) with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO) served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transpa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2022
ISSN: ['1742-6588', '1742-6596']
DOI: https://doi.org/10.1088/1742-6596/2382/1/012006